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BEARscc determines robustness of single-cell
clusters using simulated technical replicates
D.T. Severson 1, R.P. Owen 1,2, M.J. White1,2, X. Lu1 & B. Schuster-Böckler 1

Single-cell messenger RNA sequencing (scRNA-seq) has emerged as a powerful tool to study

cellular heterogeneity within complex tissues. Subpopulations of cells with common gene

expression profiles can be identified by applying unsupervised clustering algorithms. How-

ever, technical variance is a major confounding factor in scRNA-seq, not least because it is

not possible to replicate measurements on the same cell. Here, we present BEARscc, a tool

that uses RNA spike-in controls to simulate experiment-specific technical replicates. BEARscc

works with a wide range of existing clustering algorithms to assess the robustness of clusters

to technical variation. We demonstrate that the tool improves the unsupervised classification

of cells and facilitates the biological interpretation of single-cell RNA-seq experiments.
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The gene expression landscape of single cells can reveal
important biological insights into the processes driving
development or disease. The development of techniques to

sequence mRNA from individualized cells (scRNA-seq) has
enabled researchers to study cell subpopulations, including rare
cell types, at an unprecedented scale and resolution1–3.

However, scRNA-seq has inherently high technical variability,
and it is not possible to have true technical replicates for the same
cell. This presents a major limitation for scRNA-seq analysis4, 5.
Specifically, read count measurements often vary considerably as
a result of stochastic sampling effects, arising from the limited
amount of starting material4, 5. Also, false-negative observations
frequently occur because expressed transcripts are not amplified
during library preparation (the drop-out effect)4, 5. Another
common problem is systematic variation due to minute changes
in sample processing; these batch-dependent differences in cDNA
conversion, library preparation and sequencing depth can easily
mask biological differences among cells and might compromise
many published scRNA-seq results2, 6.

One widely adopted approach to adjust for technical variation
between samples is the addition of known quantities of RNA
spike-ins to each cell sample before cDNA conversion and library
preparation7. Several methods use spike-ins to normalize read
counts per cell before further analysis8, 9, but this use has been
criticized because it exacerbates the effect of differences in RNA
content per cell, e.g., due to variations in cell size2, 8. Unfortu-
nately, the limited volumes of starting material in single-cell
transcriptomics inherently preclude the possibility of true tech-
nical replication.

To address this shortcoming of scRNA-seq analysis, we
developed BEARscc (Bayesian ERCC Assessment of Robustness
of single-cell clusters), an algorithm that uses spike-in measure-
ments to model the distribution of experimental technical var-
iation across samples to simulate realistic technical replicates. The

simulated replicates can be used to quantitatively and qualita-
tively evaluate the effect of measurement variability and batch
effects on analysis of any scRNA-seq experiment, facilitating
biological interpretation. BEARscc represents a use for spike-in
controls that is not subject to the same problems as per-sample
normalization.

In many scRNA-seq studies, statistical clustering methods are
used to identify cells with similar gene expression profiles that
could represent distinct cell types1, 10, 11. BEARscc was designed
specifically with this application in mind. The simulated technical
replicates generated by BEARscc can be fed into most existing
clustering algorithms. The BEARscc package provides analysis
tools to evaluate the resulting replicate clusters, and can thus
reveal how robust the classification of cells into subtypes is to
technical variation.

Results
Outline of BEARscc workflow. Conceptually, BEARscc addresses
the lack of experimental technical replicates in single-cell studies
by simulating technical replicates. These simulated technical
replicates are based on RNA spike-ins included in the experiment.
Because RNA spike-ins have undergone the same sequencing
steps as the cellular RNA, they can be used to create an
experiment-specific model of the technical variability. The
simulated replicates can then be analyzed using almost any
existing clustering method (to group cells with similar gene
expression profiles) as a way of assessing how technical variation
might influence the clusters identified in the real experimental
data (i.e., how ‘robust’ the clusters are to technical variation). This
helps in the identification of clusters that are most likely to
represent real biological sub-populations of cells.

BEARscc consists of three steps (Fig. 1): modelling technical
variance based on spike-ins (Step 1); simulating technical

Step 3: Cluster-simulated
replicates     

Step 2: Simulate technical replicates
Step 1: Model technical variance based on
spike-ins
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Fig. 1 Overview of the BEARscc algorithm. Step 1, the variance of gene expression expected in a replicate experiment is estimated from the variation of
spike-in measurements. Top: variation in spike-in read counts corresponds well with experimentally observed variability in biological transcripts (for details
of control experiment see Methods) and read counts simulated by BEARscc. Bottom: drop-out likelihood is modelled separately, based on the drop-out rate
for spike-ins of a given concentration. Shown is the average percentage drop-out rate as a function of the number of transcripts per sample, for spike-ins,
simulated replicates and experimental observations in a control experiment (see Methods). Step 2, simulating technical replicates: the observed gene
counts (top matrix) are transformed into multiple simulated technical replicates (bottom) by repeatedly applying the noise model derived in Step 1 to every
cell in the matrix. Step 3, calculating a consensus: each simulated replicate (from Step 2) is clustered to create an association matrix. All the association
matrices (bottom) are averaged into a single noise consensus matrix (top) that reflects the frequency with which cells are observed in the same cluster
across all simulated replicates. Based on this matrix, noise consensus clusters can then be derived (coloured bar above matrix)
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replicates (Step 2); and clustering simulated replicates (Step 3). In
Step 1, an experiment-specific model of technical variability
(noise) is estimated using observed spike-in read counts. This
model consists of two parts. In the first part, expression-
dependent variance (i.e., the expected variance of expression
levels for a gene with a particular abundance) is approximated by
fitting read counts of each spike-in across cells to a mixture model
(see Methods). The second part addresses drop-out effects (i.e.,
false-negative observations that occur if expressed transcripts are
not amplified during library preparation). Based on the observed
drop-out rate for spike-ins of a given concentration, BEARscc
generates a ‘drop-out injection distribution’, which models the
likelihood that a given transcript concentration will result in a
drop-out. Next, a ‘drop-out recovery distribution’ is estimated
from the drop-out injection distribution using Bayes’ theorem;
the drop-out recovery distribution models the likelihood that a
transcript that had no observed counts in a cell was a false
negative.

In Step 2, BEARscc applies the model from Step 1 to produce
simulated technical replicates. For every observed gene’s
read count (in the real experimental data set) below which
drop-outs occurred amongst the spike-ins, BEARscc assesses
whether to convert the count to zero (using the drop-out injection
distribution). For observations where the read count is zero,
the drop-out recovery distribution is used to estimate a new
value, based on the overall drop-out frequency for that gene. After
this drop-out processing, all non-zero read counts are substituted
with a value generated by the model of expression-dependent
variance (from the first part of Step 1), parameterized to the
observed counts for each gene. Step 2 can be repeated any
number of times to generate a collection of simulated technical
replicates.

This set of simulated technical replicates can then be re-
analyzed in the same way as the original experimental observa-
tions to assess the robustness of the results to modelled technical
variation. Specifically, in Step 3 we focus on clustering analysis as
this is a common approach for analyzing scRNA-seq data to
identify groups of cells with similar gene expression profiles. Each
simulated technical replicate is clustered using the same
algorithm parameters as the original experimental observations.
An association matrix is created in which each element indicates
whether two cells share a cluster identity (1) or cluster apart from
each other (0) in a particular replicate (Fig. 1, step 3). We provide
a visual representation of the clustering variation on a cell-by-cell
level by combining association matrices to form the ‘noise
consensus matrix’. Each element of this matrix represents the
fraction of simulated technical replicates in which two cells
cluster together (the ‘association frequency’), after using a chosen
clustering method.

To quantitatively evaluate the results, three metrics are
calculated from the noise consensus matrix. “Stability” is the
average frequency with which cells within a cluster associate
with each other across simulated replicates. A stability value
above 0.5 indicates that more cells than expected by chance are
grouped together irrespective of technical variance. ‘Promiscuity’
measures the association frequency between cells within a cluster
and those outside of it. A promiscuity value above 0.5 signifies
that some cells in the cluster are better placed in other clusters.
‘Score’ is the difference between stability and promiscuity and
reflects the overall robustness of a cluster to technical variance.
A value above 0 suggests that the grouping of cells in this cluster
is not purely an artefact of technical variance (Supplementary
Fig. 1).

Determining the optimal number of clusters, k, into which cells
should be grouped is an inherently difficult problem in scRNA-
seq analysis. Heuristics, such as the silhouette index or the gap

statistic12, 13, are commonly used (e.g., in RaceID2). Other tools,
such as BackSPIN, employ custom algorithms to arrive at a fixed
number of k, while e.g., SC3 leaves the decision to the user. All of
these approaches, however, fail to account for the expected
technical variance between measurements of single cells.
BEARscc’s score statistic can help to refine what k to use, given
a clustering algorithm. By performing hierarchical clustering on
the noise consensus matrix, BEARscc can split cells into any
number of clusters between 1 and N (the total number of cells).
The hierarchical clustering with a maximum score (within a
biologically reasonable range) represents a ‘meta-clustering’ with
an optimal trade-off between within-cluster stability and
between-cluster variability (see Methods). This meta-clustering
methodology enables a semi-automatic refinement of existing
clustering results.

Evaluation of the BEARscc model of technical variance. Given
the difficulty of generating true technical replicates from single-
cell material, we generated a set of experimental replicates for
which we diluted one RNA-seq library derived from bulk human
brain tissue to single-cell RNA concentrations and sequenced
48 of these samples with ERCC spike-ins12. Each of these
48 samples is a ‘real’ technical replicate to compare to the
simulated technical replicates generated by BEARscc. The mean
and variance of the simulated read counts produced by BEARscc
closely matched the experimentally determined values (Fig. 1,
step 1—top; Supplementary Fig. 2a, b). For 95% of the genes
expressed in the library, the simulated drop-out rate differed from
the observed drop-out rate by <9% (Fig. 1, step 1—bottom;
Supplementary Fig. 2c). Together, these results suggest that
technical variation simulated by BEARscc closely resembles
technical variation observed experimentally. The simulated
expression of genes with less than 1 observed count deviated
slightly from the experimentally determined values (Supplemen-
tary Fig. 2a), however such small expression differences are
unlikely to be reproducible as they fall outside the dynamic range
of any single cell experiment.

Testing the utility of BEARscc in clustering analysis. To test
whether BEARscc can improve the detection of true subpopula-
tions of cells from single-cell transcriptome analysis, we
performed a control experiment in which we sequenced 45
‘blank’ samples opposite the diluted brain RNA, in two batches.
The blanks only contained spike-ins and trace amounts of
environmental contamination, producing sporadic read counts.
We clustered the data from the brain samples and blanks using
three widely used clustering algorithms (RaceID210, BackSPIN11,
and SC314), either alone or after simulating technical replicates
using BEARscc. Correct clustering should give perfect separation
of brain and blank samples. To avoid artifacts due to differences
in amplification-dependent library size, we applied an adjusted
cpm normalization (see Methods). Otherwise, standard para-
meters were used for all three clustering algorithms. As an
alternative to BEARscc, we also tested a simple sampling
approach where we repeatedly sampled half of all expressed genes
and re-clustered the cells based on this subset (see Methods).
Without BEARscc or this sampling approach, all three clustering
algorithms created false-positive clusters (Fig. 2a, Supplementary
Fig. 3a-c, top). BEARscc provided a clear improvement over the
original clustering and the sampling approach (Fig. 2a). Overall,
BEARscc separated brain tissue and blank samples correctly and
eliminated spurious clusters that corresponded to batch effects
(Supplementary Fig. 3a, c, coloured bars above matrices). In the
case of using BEARscc with RaceID2, three outlier cells were
incorrectly identified to be robust clusters (Supplementary
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Fig. 3b, coloured bars above matrix); the libraries for these three
samples contained fewer than 1000 observed transcripts, indi-
cating that BEARscc is limited by RaceID2’s oversensitivity to
library size differences.

Applying BEARscc to a well annotated biological data set. To
further test the utility of BEARscc, we applied BEARscc to a
previously published data set15 of scRNA-seq measurements
from early C. elegans embryogenesis. In this study, mRNA from
four biological replicates of cells from the 1, 2, 4, 8 and 16-cell
stage was sequenced. We made the assumption that cells from the
1, 4 and 16-cell stages are more different between than within
stages. We therefore expected to observe clusters that pre-
ferentially group cells from the same stage across biological
replicates. To test this, we ran RaceID210 and BackSPIN11 on the
expression data from these three distinct stages and compared the
resulting cluster assignments to the meta-clusters created by
BEARscc, or by gene sampling as described above. We found that
BEARscc outperformed gene sampling and either RaceID2 or
BackSPIN alone, as measured by the adjusted rand index
(expecting three distinct clusters, see Fig. 2a). RaceID2 alone

produced 10 clusters, which were reduced to two by BEARscc
(Supplementary Fig. 4a and Supplementary Fig. 5a, b). BackSPIN
alone resulted in 34 clusters, which BEARscc merged to 7 clusters
(Supplementary Fig. 4b and Supplementary Fig. 5c, d). These data
suggest that BEARscc reduces over-clustering by commonly used
clustering algorithms and improves the interpretation of scRNA-
seq data.

BEARscc enhances the interpretation of published data sets. To
assess the robustness of computational cell-type detection based
on real biological scRNA-seq data, we applied BEARscc to two
previously published data sets. We first re-analyzed murine brain
data (3005 cells) from Zeisel et al.11, using BEARscc together with
BackSPIN, which is the clustering algorithm used in the original
publication. Based on the score statistic, BEARscc reduced the 24
clusters produced by BackSPIN alone into 11 clusters, which
corresponded well with the manually curated cell types described
in the original publication (Adjusted Rand Index 0.72 with
BEARscc, and 0.55 for BackSPIN alone; Fig. 2a (right), Fig. 2b).
Therefore, BEARscc provided an optimal grouping of cells
without the effort of manual curation.

In a second evaluation, we re-analyzed murine intestinal data
(291 cells) from Grün et al.10, using BEARscc to generate
simulated technical replicates and RaceID2 (as described in the
original publication) for clustering. The score metric from
BEARscc indicated that 219 out of 291 cells were robustly
classified in the original work. However, the two largest clusters
—‘cluster 1’ and ‘cluster 2’—exhibited low scores (−0.07 and 0.20,
respectively) compared to the other non-outlier clusters 3, 4 and 5
(Supplementary Fig. 6a). The BEARscc noise consensus matrix
reveals high variability in the clustering patterns of cells in
clusters 1 and 2 (Supplementary Fig. 6b). Grün et al. suggest that
clusters 1 and 2 reflect closely related, undifferentiated cell types
(‘transit-amplifying’ and ‘stem-like’, respectively). Expression
patterns of genes characteristic of the two clusters were highly
similar (Supplementary Fig. 7a), compared to the expression
differences between cluster 1 and the next-largest cluster (cluster
5) (Supplementary Fig. 7b). Expression fold-changes between
clusters 1 and 2 were reduced in technical replicates, falling below
the significance threshold for many genes. BEARscc shows that
many cells in clusters 1 and 2 cannot be reliably classified into
one cluster or the other. The sharp distinction between clusters 1
and 2 described in the original publication is therefore likely to be
a result of technical variation, rather than a defining biological
feature of these cells. Instead, cells in clusters 1 and 2 seem to lie
on a gradient of differentiation between two cellular states. More
work will be needed to fully determine how the differentiation
state of stem-like cells is reflected by their transcriptome.
Nevertheless, this example demonstrates how BEARscc can help
to improve the biological interpretation of scRNA data.

Performance of BEARscc. With single-cell experiments becom-
ing larger and larger, program execution time can become a
bottleneck for computational analyses. Using simulated data,
we show that BEARscc’s run-time grows linearly with increasing
numbers of cells, assuming a constant number of genes (Sup-
plementary Fig. 8). On a desktop PC (Intel i7 with 2.9 GHz), a
single BEARscc process required ~16 min and 19 min to generate
a simulated technical replicate from the C. elegans (14,448 genes
by 115 samples) and murine brain (19,972 genes by 3005 sam-
ples) data, respectively. Importantly, the generation of simulated
replicates can be distributed across multiple independent
processes on multiple machines. The real time requirement
for generating a replicate data sets is thus mostly limited by
the available hardware. Once simulated technical replicates have
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been generated, the runtime of any downstream clustering ana-
lysis is dependent on the specifics of the respective clustering
algorithm.

Discussion
BEARscc addresses the challenges posed by intrinsically high
technical variability in single-cell transcriptome sequencing
experiments and enables the evaluation of single cell clustering
results. Importantly, BEARscc is not a clustering algorithm in
itself, but rather a tool to evaluate the results produced by any
available clustering algorithm. To do so, it aggregates the infor-
mation from exogenous control spike-ins across samples to create
a model of both the expected variance of endogenous read counts
and the likelihood of false-negative measurements (drop-outs).
This represents an alternative use of spike-in controls that is not
subject to potential issues surrounding the use of spike-ins for
per-sample normalisation. Our application of BEARscc to bio-
logical datasets demonstrates that BEARscc reduces over-clus-
tering, is able to identify biologically relevant cell groups in an
unsupervised way and provides additional insights for the inter-
pretation of single-cell sequencing experiments.

We note that extreme batch effects with a multi-modal
distribution of variance could skew BEARscc’s noise model and
lead to biased simulated replicates. We envision that future
versions of BEARscc will attempt to detect and warn about such
biases. Furthermore, while the drop-out model calculated by
BEARscc is accurate for genes with an average expression of more
than one count, there is still scope for improvement. Future work
will focus on more precise models of drop-outs in the context of
very low gene expression. As it stands, BEARscc enables users to
identify the components of scRNA-seq clustering results that are
robust to noise, thereby increasing confidence in those results
for downstream analysis. Therefore, we recommend that future
scRNA-seq analysis pipelines apply the best available clustering
algorithm in conjunction with BEARscc in order to define the
most biologically meaningful groups of cells for interpretation.

Methods
Public data analysis. Primary murine cortex and hippocampus single-cell mea-
surements for 3005 cells from Zeisel et al.11 were retrieved from the publicly
available Linnarsson laboratory data repository [http://linnarssonlab.org/cortex/].
Primary murine intestinal single cell measurements of 260 cells from Grün et al.10

were downloaded from the van Oudenaarden github repository [https://github.
com/dgrun/StemID]. Primary C. elegans embryo single-cell measurements for 219
cells from Tintori et al.15 were obtained from the SRA16 sequencing database with
project id SRP070155. Raw reads were mapped to PRJNA13758.WS259 using
STAR17. Exact position duplicates were removed. These samples were deeply
sequenced (~2 million reads or more per cell) resulting in saturated ERCC spike-
ins with limited spike-in drop-outs. To allow BEARscc to build the noise models
from spike-in data for simulating of technical replicates, mapped libraries were
down-sampled to 20% of mapped reads. Features were counted using HTseq17.
Samples identified by Tintori et al. as failing quality control were excluded, and
counts were normalized to adjusted counts per million as described below.

Algorithmic generation of simulated technical replicates. Simulated technical
replicates were generated from the noise mixture model and two drop-out models.
For each gene, the count value of each sample is systematically transformed using
the mixture model, Z(c), and the drop-out injection, Pr(X= 0|Y= k), and recovery,
Pr(Yj= y|Xj= 0), distributions in order to generate simulated technical replicates
as indicated by the following pseudocode:

FOR EACH gene, j
FOR EACH count, c
IF c=0
n ← SAMPLE one count,y, from Pr(Yj= y|Xj= 0)
IF n=0
c ← 0
ELSE
c ← SAMPLE one count from Z(n)
ENDIF
ELSE
IF c ≤ k

dropout ← TRUE with probability, Pr(X= 0|Y= k)
IF dropout=TRUE
c ← 0
ELSE
c ← SAMPLE one count from Z(c)
ENDIF
ELSE
c ← SAMPLE one count from Z(c)
ENDIF
ENDIF
RETURN c
DONE
DONE

Modelling noise from spike-ins. Technical variance was modelled by fitting a
single parameter mixture model, Z(c) to th spike-ins’ observed count distributions.
The noise model was fit independently for each spike-in transcript and subse-
quently regressed onto spike-in mean expression to define a generalized noise
model. This was accomplished in three steps:

1. Define a mixture model composed of Poisson and Negative Binomial random
variables: Z~(1− α)*Pois(μ) + α*NBin(μ,σ)

2. Empirically fit the parameter, αi, in a spike-in-specific mixture-model, Zi, to
the observed distribution of counts for each ERCC spike-in transcript, i,
where μi and σi are the observed mean and variance of the given spike-in. The
parameter, αi, was chosen such that the error between the observed and
mixture model was minimized.

3. Generalize the mixture model by regressing αi parameters and the observed
variance σi onto the observed spike-in mean expression, μi. Thus the mixture
model describing the noise observed in ERCC transcripts was defined solely
by μ, which was treated as the count transformation parameter, c, in the
generation of simulated technical replicates.

In step 2, a mixture model distribution is defined for each spike-in, i: Zi(αi,μi,σi)
~(1− αi)*Pois(μi)+ αi*NBin(μi,σi). The distribution, Zi, is fit to the observed
counts of the respective spike-in, where αi is an empirically fitted parameter, such
that the αi minimizes the difference between the observed count distribution of the
spike-in and the respective fitted model, Zi. Specifically, for each spike-in transcript,
μi and σi were taken to be the mean and standard deviation, respectively, of the
observed counts for spike-in transcript, i. Then, αi was computed by empirical
parameter optimization; αi was taken to be the αi,j in the mixture-model, Zi,j(αi,j,μi,
σi)~(1− αi,j)*Pois(μi)+ αi,j*NBin(μi,σi), found to have the least absolute total
difference between the observed count density and the density of the fitted model,
Zi. In the case of ties, the minimum αi,j was chosen.

In step 3, α(c) was then defined with a linear fit, αi= a*log2(μi)+ b. σ(c) was
similarly defined, log2(σi)= a*log2(μi)+ b. In this way, the observed distribution
of counts in spike-in transcripts defined the single parameter mixture model, Z(c),
used to transform counts during generation of simulated technical replicates:

ZðcÞ � 1� α cð Þð Þ � Pois cð Þ þ αðcÞ �NBin c; σðcÞð Þ:

During technical replicate simulation, the parameter c was set to the observed
count value, a, and the transformed count in the simulated replicate was
determined by sampling a single value from Z(c=a).

Inference of drop-out distributions using spike-ins. A model of the drop-outs
was developed to inform the permutation of zeros during noise injection. The
observed zeros in spike-in transcripts as a function of actual transcript con-
centration and Bayes’ theorem were used to define two models: the ‘drop-out
injection distribution’ and the ‘drop-out recovery distribution’.

The drop-out injection distribution was described by Pr(X= 0|Y= y), where X
is the distribution of observed counts and Y is the distribution of actual transcript
counts; the density was computed by regressing the fraction of zeros observed in
each sample, Di, for a given spike-in, i, onto the expected number of spike-in
molecules in the sample, yi, e.g., D= a*y + b. Then, D describes the density of
zero-observations conditioned on actual transcript number, y, or Pr(X= 0|Y= y).
Notably, each gene was treated with an identical density distribution for drop-out
injection.

In contrast, the density of the drop-out recovery distribution, Pr(Yj= y|Xj= 0),
is specific to each gene, j, where Xj is the distribution of the observed counts and Yj

is the distribution of actual transcript counts for a given gene. The gene-specific
drop-out recovery distribution was inferred from drop-out injection distribution
using Bayes’ theorem and a prior. This was accomplished in 3 steps:

1. For the purpose of applying Bayes’ theorem, the gene-specific distribution, Pr
(Xj= 0|Yj= y), was taken to be the the drop-out injection density for all
genes, j.

2. The probability that a specific transcript count was present in the sample, Pr
(Yj= y), was a necessary, but empirically unknowable prior. Therefore, the
prior was defined using the law of total probability, an assumption
of uniformity, and the probability that a zero was observed in a given gene,
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Pr(Xj= 0). The probability, Pr(Xj= 0), was taken to be the fraction of
observations that were zero for a given gene. This was done to better inform
the density estimation of the gene-specific drop-out recovery distribution.

3. The drop-out recovery distribution density was then computed by applying
Bayes’ theorem:

Pr Yj ¼ yjXj ¼ 0
� � ¼ Pr Xj ¼ 0jYj ¼ y

� � � Pr Yj ¼ y
� �

Pr Xj ¼ 0
� � : ð1Þ

In the second step, the law of total probability, an assumption of uniformity,
and the fraction of zero observations in a given gene were leveraged to define the
prior, Pr(Yj= y). First, a threshold of expected number of transcripts, k in Y, was
chosen such that k was the maximum value for which the drop-out injection
density was non-zero. Next, uniformity was assumed for all expected number of
transcript values, y greater than zero and less than or equal to k; that is Pr(Yj= y)
was defined to be some constant probability, n. Furthermore, Pr(Yj= y) was
defined to be 0 for all y>k. To inform Pr(Yj= y) empirically, Pr(Yj= 0) and n were
derived by imposing the law of total probability (2) and unity (3) yielding a system
of equations:

Pr Xj ¼ 0
� � ¼

Xk

y¼0

Pr Xj ¼ 0jYj ¼ y
� � � Pr Yj ¼ y

� �� � ð2Þ

Xk

y¼0

Pr Yj ¼ y
� �� � ¼ Pr Yj ¼ 0

� �þ k � n ¼ 1 ð3Þ

The probability that a zero is observed given there are no transcripts in the
sample, Pr(Xj= 0|Yj= 0), was assumed to be 1. With the preceding assumption,
solving for Pr(Yj= 0) and n gives:

n ¼ 1� Pr Yj ¼ 0
� �

k
ð4Þ

Pr Yj ¼ 0
� � ¼ Pr Xj ¼ 0

� �� 1
k �

Pk
y¼1 Pr Xj ¼ 0jYj ¼ y

� �� �

1� 1
k �

Pk
y¼1 Pr Xj ¼ 0jYj ¼ y

� �� � ð5Þ

In this way, Pr(Yj= y) was defined by Eq. (4) for y in Yj less than or equal to k
and greater than zero, and defined by Eq. (5) for y in Yj equal to zero. For y in Yj

greater than k, the prior Pr(Yj= y) was defined to be equal to zero.
In the third step, the previously computed prior, Pr(Yj= y), the fraction of zero

observations in a given gene, Pr(Xj= 0), and the drop-out injection distribution, Pr
(Xj= 0|Yj= y), were utilized to estimate with Bayes’ theorem the density of the
drop-out recovery distribution, Pr(Yj= y|Xj= 0). During the generation of
simulated technical replicates for zero observations and count observations less
than or equal to k, values were sampled from the drop-out recovery and injection
distributions as described in the pseudocode of the algorithm.

Observing real technical noise. Brain whole tissue total RNA (Agilent Tech-
nologies, cat. 540005) was diluted to 10 pg aliquots and added to 1 μL. cDNA
conversion, library preparation, and sequencing were performed by the Wellcome
Trust Center for Human Genomics Sequencing Core. Blank samples were identi-
cally prepared with nuclease free water. Samples were pipetted into 96-well plates
and treated as single cells using Smartseq2 cDNA conversion as described by Picelli
et al.19 with minor modifications. The library was prepared using Fludigm’s
recommendations for Illumina NexteraXT at ¼ volume with minor modifcations,
and sequenced on the Illumina HiSeq4000 platform. Raw reads were mapped to
hg19 using STAR17. Exact position duplicates were removed, and features were
counted using HTseq17. Counts were normalized to adjusted counts per million as
described below.

Normalization of counts. For the brain and blanks control experiment and C.
elegans data, raw counts were normalized to adjusted counts per million to reduce
batch effects: raw counts were divided by the total number of counts and multiplied
by 106. For each sample library, a detection rate was computed by dividing the
number of genes with at least one observed count by the total number of observed
genes across all libraries. A scaling factor was then computed for each sample
library by dividing each library’s detection rate by the median detection rate, as
initially suggested by Hicks et al.20.

Clustering of counts data. BackSPIN, SC3 and RaceID2 were run according to
algorithm-specific recommendations10, 11, 14. RaceID2 was allowed to identify
cluster number under default parameters. For the brain and blanks control
experiment and C. elegans data, RaceID2 was modified to skip normalization since
scaled counts per million normalization had already been applied to the data set.

The number of clusters, k, selected for SC3 clustering was determined empirically
by selecting k with the optimal silhouette distribution across noise injected counts
matrices.

Computation of consensus matrix. Hundred simulated replicate matrices for n
cells and m genes were clustered using the respective clustering algorithm (SC3,
BackSPIN, RaceID2) as described above. Cluster labels were used to compute an
n × n binary association matrix for each clustering. Each element of the association
matrix represents a cell–cell interaction, where a value of 1 indicates that two cells
share a cluster and a value of 0 indicates two cells do not share a cluster. An
arithmetic mean was taken for each respective element across the resulting 100
association matrices to produce an n × n noise consensus matrix, where each ele-
ment represents the fraction of noise injected counts matrices that, upon clustering,
resulted in two cells sharing a cluster.

Computation of BEARscc cluster metrics. To calculate cluster stability, the noise
consensus matrix was subset to cells assigned to the cluster. The cluster stability
was then calculated as the arithmetic mean of the upper triangle of the subset noise
consensus matrix. To calculate cluster promiscuity, the rows of the noise consensus
matrix were subset to cells assigned to the cluster and the columns are subset to the
cells not assigned to the cluster. For clusters with as many or more cells assigned to
them than not assigned, the promiscuity was defined as the arithmetic mean of the
elements in the subset matrix. Otherwise, the columns were further subset to the
same number of cells as were assigned to the cluster, where the cells outside of the
cluster with the strongest mean association with cells inside the cluster are chosen.
The promiscuity was defined as the arithmetic mean of the elements in this further
subset matrix. Each cluster’s promiscuity was subtracted from its stability to cal-
culate cluster score.

Computation of BEARscc cell metrics. To calculate a cell’s stability, the arith-
metic mean was taken of that cell’s association frequencies with other cell’s within
the cluster. To calculate a cell’s promiscuity, there were two cases. For cells in
clusters with as many or more cells assigned to them than not assigned, the
promiscuity was the arithmetic mean of that cell’s association frequencies with all
cells not assigned to the relevant cluster. For cells in clusters of size n, with fewer
cells assigned to them than not assigned, the cell’s promiscuity was the arithmetic
mean with the n cells not assigned to the cluster with the highest association
frequencies. Each cell’s promiscuity was subtracted from its stability to calculate
cell score.

Estimating the background distribution of BEARscc metrics. To compute null
distributions for the stability, promiscuity and score metrics, random clusters were
generated with varying numbers of cells m in a data set, where each cell was
assigned to an arbitrary reference cluster with size n. We then computed 100
random association matrices by taking each possible cell-to-cell association and
assigning a 0 or 1 with equal probability, i.e., a cell was equally likely to associate or
not with any cell. The noise consensus matrix was computed from these 100
random association matrices. From the noise consensus, the score, stability, and
promiscuity metrics were calculated both per cell and per cluster. This computation
was repeated 100 times for each set m and n parameters to describe the null
distribution of BEARscc metrics at the cell and cluster level.

Evaluation of BEARscc runtime. To estimate the run-time requirements of
BEARscc, a random sampling of 2000 samples and 20,000 genes was taken from
the brain whole tissue counts matrix with replacement. This large count matrix was
subset to an increasing number of genes (63, 504, 700, 1008, 1800 and 2016) and
cells (6, 12, 25, 36, 50, 72) to generate counts matrices with increasing numbers of
elements. The BEARscc functions estimate_noiseparameters and simulate_r-
eplicates were run on each count matrix on a standard desktop PC (Intel i7 with
2.9 GHz). The microbenchmark R package was used to measure the execution time
for each counts matrix subset.

Estimation of cluster number k. To determine the cluster number, k, from
the hierarchical clustering of the noise consensus, the resulting dendrogram was
cut multiple times to form N clusterings with cluster numbers k=1 to k=N
clusters. The average score metric was computed for each clustering, and k was
chosen by taking the k with the maximum average score metric. Evaluating all
possible k from 1 to the number of cells in the experiment is computationally
expensive and unlikely to be biologically meaningful. In this work, N was capped at
0.1 times the number of cells in the experiment: N=10 for the brain and blanks
control, N=30 for the murine intestine experiment, and N=300 for the murine
brain data.

Gene sampling. For comparison with BEARscc, 100 subsampling iteration
matrices for n cells and m genes were generated by sampling one half of expressed
genes and clustered using the respective clustering algorithm (SC3, BackSPIN,
RaceID2). For each data set, genes were excluded with less than 25 total raw counts
across all samples in the cohort. The remaining genes formed the sample space. In
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each subsampling iteration, one half of the genes were sampled without replace-
ment, and their expression across cells was used as the counts matrix. Identically to
the computation of the BEARscc noise consensus matrix, cluster labels were used
to compute an n × n binary association matrix for each clustering, and an arith-
metic mean was taken for each respective element across the resulting 100 asso-
ciation matrices to produce an n × n subsampling consensus matrix. Identically to
BEARscc analysis, the BEARscc score metric was used to determine cluster number
k, and the resulting cluster labels for each data set and algorithm were compared
with BEARscc by computing the adjusted rand index for each with respect to the
relevant ground truth.

Code availability. BEARscc[https://doi.org/10.18129/B9.bioc.BEARscc] is freely
available as an R package through Bioconductor18.

Data availability. The single cell RNA-sequencing counts from primary murine
brain and intestine are available on the Linnarsson laboratory data repository
[http://linnarssonlab.org/cortex/] and the van Oudenaarden laboratory github
repository [https://github.com/dgrun/StemID], respectively. The single RNA-
sequencing raw reads from primary C. elegans embryo are available on the SRA16

sequencing database through the GEO data repository with accession number
GSE77944[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77944]. The
raw reads counts for the brain and blanks experiment are available on the GEO
data repository with accession number GSE95155 [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE95155].
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